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Abstract. The process of exclusive heavy vector meson photoproduction, γp → V p, is studied in the
framework of QCD factorization. The mass of the produced meson, V = Υ or J/Ψ , provides a hard scale
for the process. We demonstrate that, in the heavy quark limit and at the one-loop order in perturbation
theory, the amplitude factorizes in a convolution of a perturbatively calculable hard-scattering amplitude
with the generalized parton densities and the non-relativistic QCD matrix element 〈O1〉V . We evaluate
the hard-scattering amplitude at one-loop order and compare the data with theoretical predictions using
an available model for generalized parton distributions.

1 Introduction

The process of elastic production of heavy quarkonium in
photon–proton collisions,

γp → V p , where V = J/Ψ or Υ , (1.1)

was studied in fixed target [1, 2] and in HERA collider
experiments both for the case of a real photon in the ini-
tial state (photoproduction) [3–7] and for the case when
the meson is produced by a highly virtual photon (electro-
production) [8, 9]. The primary motivation for the strong
interest in this process (and in the similar process of light
vector meson electroproduction) is that it can potentially
serve to constrain the gluon density in a proton. On the
theoretical side, the large mass of the heavy quarks pro-
vides a hard scale for the process, which justifies the ap-
plication of QCD factorization methods that allow one to
separate the contributions to the amplitude coming from
different scales.

The first step in this direction was made by Ryskin [10],
who expressed the amplitude of exclusive heavy meson
production in terms of the gluon density and, accordingly,
predicted that the cross section, which is proportional to
the square of the gluon density, quickly grows with energy.
Electroproduction of light vector mesons was studied later
in [11], where it was shown that in this case the amplitude
factorizes in terms of a perturbative hard-scattering coef-
ficient function and non-perturbative quantities: a meson
distribution amplitude and a gluon density in a proton.
Again, an increase of the cross section with energy was
predicted. The data from HERA appear to be in accord
with these predictions.

The early approaches to factorization in exclusive vector
meson production [10,11] were based on the use of leading
double ln (1/x) lnQ2 approximation and were designed for
the description of the process at high energies (in the diffrac-
tive or small x kinematics). Later on it was understood that
in the scaling limit,Q2 → ∞ and x = Q2/W 2 fixed, deeply
virtual meson electroproduction [12] and Compton scat-
tering (DVCS) [13–15] processes may be studied within the
QCD collinear factorization method. The proof of factor-
ization for meson electroproduction was provided in [16].
Due to non-vanishing momentum transfer in the t-channel
the amplitude of this deeply virtual exclusive process fac-
torizes in terms of generalized parton distributions (GPDs)
rather than the ordinary parton densities which enter the
QCD description of inclusive deep inelastic scattering and
the other hard inclusive processes. GPDs extend the for-
ward parton distributions and the nucleon electromagnetic
form factors to the non-forward kinematics of the electro-
production processes, they encode much richer information
about the dynamics of a nucleon than the conventional par-
ton distributions. This additional information can be pre-
sented e.g. in terms of spatial distributions of energy, spin,
. . . within a nucleon [17–19]. By now the studies of deeply
virtual exclusive processes and GPDs have developed in a
very dynamical field; for recent reviews, see [20,21].

Another QCD approach to exclusive meson production
at high energies is related to k⊥ (or high energy) factoriza-
tion [22,23]; it is based on the BFKL method [24,25]. In this
scheme large logarithms of energy ln (1/x) are resummed
and amplitudes are given by an overlap integral of the
k⊥ dependent (unintegrated) gluon density and the hard-
scattering kernel. High energy factorization can be formu-
lated also in terms of color dipoles [26,27]. Although these
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approaches to hard diffractive processes are very promis-
ing, their firm foundation, unfortunately, remains limited
due to the use of the leading ln (1/x) approximation. A
few years ago the BFKL formalism was extended to the
next-to-leading order [28], but the generalization of the k⊥
factorization scheme or the dipole approach to this order
remains still a matter of debate. An extended overview of
different approaches to this problem may be found in [29].

Most of the theoretical studies [30–38] of process (1.1)
were performed in the framework of k⊥ factorization or
dipole approaches. Despite great progress and evident suc-
cess in the description of the data the theoretical uncer-
tainties remain poorly understood. In particular, it is be-
lieved that the account of skewedness, i.e. the effect of
different parton momentum fractions, is very important
for the kinematic range available in the experiment. But
since this effect is beyond leading ln (1/x), its model inde-
pendent implementation into k⊥ factorization scheme or
dipole formalism remains a challenge for the theory.

In this paper we study process (1.1) in the heavy quark
limit in the collinear factorization approach. The physics
behind collinear factorization is the separation of scales.
The mass of the heavy quark, m, provides a hard scale. A
photon fluctuates into a heavy quark pair at small trans-
verse distances ∼ 1/m, which are much smaller than the
ones ∼ 1/Λ related to any non-perturbative hadronic scale
Λ. We will show by explicit calculation that to leading
power in 1/m counting and one-loop order in perturbation
theory the amplitude is given by the convolution of the per-
turbatively calculable hard-scattering amplitude and non-
perturbative quantities. The latter are gluon and quark
GPDs and the non-relativistic QCD (NRQCD) [39] ma-
trix element 〈O1〉V which parameterizes in our case the
essential non-relativistic dynamics of a heavy meson sys-
tem. This means that two firmly founded QCD approaches,
namely collinear factorization and NRQCD, can be com-
bined to construct a model free description of heavy meson
photoproduction which is free of any high energy approx-
imation and may be used also in the kinematic domain
where the energy of the photon nucleon collision, W , is
of order of the meson mass, M . We evaluate the hard-
scattering amplitude at next-to-leading order. This allows
us to reduce the scale dependence, which is especially im-
portant at high energies, since in this case (i.e. in the small
x region) the dependence of the gluon distribution on the
scale is very strong.

The factorization theorem [16] for meson electroproduc-
tion expresses the amplitude in a form containing a meson
light-cone distribution amplitude. Its application to the
production of a heavy meson is restricted to the region of
very large virtualities, Q2 � m2, where the mass of the
heavy quark may be completely neglected. In contrast, in
photoproduction or electroproduction at moderate virtu-
alities the heavy quark mass provides a hard scale and the
non-relativistic nature of the heavy meson is important. In
this case, according to NRQCD, which provides a system-
atic non-relativistic expansion, a factorization formalism
must be constructed in terms of matrix elements of NRQCD
operators. They are characterized by their different scaling

behavior with respect to v, the typical velocity of the heavy
quark. In the leading approximation only the matrix ele-
ment 〈O1〉V contributes, which describes in NRQCD the
leptonic meson decay rate [39]

Γ [V → l+l−] =
2e2qπα2

3
〈O1〉V

m2

(
1 − 8αS

3π

)2

. (1.2)

Here α is the fine-structure constant and m and e are the
pole mass and the electric charge of the heavy quark (ec =
2/3, eb = −1/3). Equation (1.2) includes the one-loop QCD
correction [40] and αS is the strong coupling constant.

The leading relativistic correction to the meson decay
rate and to the photoproduction process (1.1) scales ∼ 〈v2〉;
see [39]. It is expressed through the matrix element of an
additional NRQCD operator. Since for a non-relativistic
Coulomb system v ∼ αS, the relativistic effect is less im-
portant than the one-loop perturbative correction. The
relativistic correction (∼ 〈v2〉) to the result [10] for heavy
meson production was studied in [41]; see also [42]. Despite
the fact that 〈v2〉J/Ψ ∼ 0.2 ÷ 0.25, the relativistic effect
was found to be rather small. On the cross section level it
amounts to 7% for J/Ψ and it should be even smaller for
Υ production.

We will neglect relativistic corrections and consider the
process (1.1) in leading order of the relativistic expansion.
In this case all essential information about the quarkonium
structure is encoded in one NRQCD matrix element. In
potential models it can be related to the value of the radial
wave function at the origin,

〈O1〉V =
Nc

2π
|RS(0)|2 + O(v2) , (1.3)

hereNc = 3 for QCD. Due to the relation to potential mod-
els this scheme of calculation is often called in the literature
the static or non-relativistic approximation. However, one
should notice that using NRQCD it can be improved in
a systematic and rigorous way calculating relativistic and
perturbative corrections. In this paper we will concentrate
on the one-loop perturbative correction. Our main result
is that for this process the collinear factorization method
is compatible at one-loop level with the relativistic expan-
sion. This allows us to obtain unambiguous predictions.
We found that QCD corrections are large. They change
not only the overall normalization but may affect, also, the
predictions for the dependence of the cross section on en-
ergy.

Our presentation is organized as follows. In Sect. 2 we
introduce the notation, discuss the factorization procedure
and give the predictions for the amplitude in leading order
(LO). Section 3 is devoted to the detailed derivation of the
hard-scattering amplitude at next-to-leading order (NLO).
Our method is similar to the one we used recently [43] for
the calculation of light vector meson electroproduction in
NLO. It is based on the use of dispersion relations and
the low energy theorem for the radiation of a soft gluon,
the non-abelian generalization of the theorem known in
QED [44]. In Sect. 4 we present a numerical analysis. In
the concluding section we summarize our work and discuss
some open questions.
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2 Factorization and the amplitude at LO

The kinematics of heavy vector meson photoproduction
is shown in Fig. 1. The momenta of the incoming photon,
incoming nucleon, outgoing nucleon and the produced me-
son are q, p, p′ and K, respectively. In the leading order of
the relativistic expansion the meson mass can be taken as
twice the heavy quark pole mass, K2 = M2 and M = 2m.
The photon and nucleon are on the mass shell, q2 = 0,
p2 = p′2 = m2

N , where mN is the proton mass. The photon
polarization is described by the vector eγ , (eγq) = 0. The
invariant CM energy is sγp = (q + p)2 = W 2. We define

∆ = p′ − p , P =
p+ p′

2
, t = ∆2 ,

(q −∆)2 = K2 = M2 , ζ =
M2

W 2 . (2.1)

In our case the variable ζ has a similar meaning as xBj in
the electroproduction process.

We introduce two light-cone vectors:

n2
+ = n2

− = 0 , n+n− = 1 . (2.2)

Any vector a is decomposed as

aµ = a+nµ
+ + a−nµ

− + a⊥ , a2 = 2a+a− − a2 . (2.3)

We choose the light-cone vectors in a similar way as in Ji’s
notation, namely

q =
(W 2 −m2

N )
2(1 + ξ)W

n− ,

p = (1 + ξ)W n+ +
m2

N

2(1 + ξ)W
n− ,

p′ = (1 − ξ)W n+ +
(m2

N + ∆2)
2(1 − ξ)W

n− +∆⊥ ,

∆ = −2 ξ W n+ +
(

ξ m2
N

(1 − ξ2)W
+

∆2

2 (1 − ξ)W

)
n−

+∆⊥ . (2.4)

We are interested in the kinematic region where the invari-
ant transferred momentum,

t = ∆2 = −
(

4 ξ2

1 − ξ2
m2

N +
1 + ξ

1 − ξ
∆2

)
, (2.5)

is small, much smaller than m. In the scaling limit the
variable ξ which parameterizes the plus component of the
momentum transfer equals ξ = ζ/(2 − ζ).

The amplitude of quarkonium bound state production
can be derived from the matrix element which describes the
production of the on-shell heavy quark pair, q21 = q22 = m2,
q1 +q2 = K, with a small relative momentum. The explicit
equations providing the projection onto quarkonium states
with different quantum numbers may be found in [45].
For the S-wave, spin-triplet case, which we are interested
in, the procedure corresponds to neglecting the relative
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Fig. 1. Kinematics of heavy vector meson photoproduction

momentumof thepair, q1 = q2 = K/2, and the replacement
of the quark spinors by

vi(q2) ūj(q1) → δij
4Nc

( 〈O1〉V

m

)1/2

�e∗
V (�K +M) . (2.6)

Here the indices i, j parameterize the color state of the
pair, and the vector eV describes the polarization of the
produced vector meson, (eV e

∗
V ) = −1 and (KeV ) = 0.

Collinear factorization states that to leading twist accu-
racy, i.e. neglecting the contributions which are suppressed
by powers of 1/m, the amplitude can be calculated in the
form suggested by Fig. 1:

M =
( 〈O1〉V

m

)1/2 ∑
p=g,q,q̄

1∫
0

dx1A
p
H(x1, µ

2
F) Fp

ζ (x1, t, µ
2
F) .

(2.7)
Here Fp

ζ (x1, µ
2
F) is the gluon or quark GPD in Radyushkin’s

notation [12]; x1 and x2 = x1 − ζ are the plus momen-
tum fractions of the emitted and the absorbed partons,
respectively. Ap

H(x1, µ
2
F) is the hard-scattering amplitude

and µF is the (collinear) factorization scale. By definition,
GPDs only involve small transverse momenta, k⊥ < µF,
and the hard-scattering amplitude is calculated neglecting
the parton transverse momenta. Since quarkonium consists
of heavy quarks, it can by produced in LO only by gluon
exchange. The Feynman diagrams which describe the LO
gluon hard-scattering amplitude are shown in Fig. 2. The
contribution of the light quark exchange to quarkonium
photoproduction starts in collinear factorization at NLO,
it is shown in Fig. 3. Since in this paper we consider the lead-
ing helicity non-flip amplitude, in (2.7) the hard-scattering
amplitudes Ap

H(x1, µ
2
F) do not depend on t. The account

of this dependence would lead to the power suppressed,
∼ t/m, contribution.

The momentum fraction x1, 0 ≤ x1 ≤ 1, is defined
with respect to the momentum of the incoming proton.
It is convenient to introduce the variable x, −1 ≤ x ≤ 1,
which parameterizes parton momenta with respect to the
symmetricmomentumP = (p+p′)/2.The relationbetween
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a b
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Fig. 2a–f. The hard-scattering amplitude at LO
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Fig. 3. The light quark contribution to heavy meson photo-
production

the different variables is

x1 =
x+ ξ

1 + ξ
, x2 =

x− ξ

1 + ξ
. (2.8)

In terms of the symmetric variable x the factorization for-
mula reads

M =
4π

√
4πα eq(e∗

V eγ)
Nc ξ

( 〈O1〉V

m3

)1/2

×
1∫

−1

dx
[
Tg(x, ξ)F g(x, ξ, t) + Tq(x, ξ)F q,S(x, ξ, t)

]
,

F q,S(x, ξ, t) =
∑

q=u,d,s

F q(x, ξ, t) . (2.9)

Here the dependence of the GPDs and the hard-scattering
amplitudes on µF is suppressed for brevity. In the quark
contribution the sum runs over all light flavors; see Fig. 3.

GPDs are defined as the matrix element of the renor-
malized light-cone quark and gluon operators:

F q(x, ξ, t)

=
1
2

∫
dλ
2π

eix(Pz) 〈p′|q̄
(
−z

2

)
�n−q

(z
2

)
|p〉
∣∣∣
z=λn−

=
1

2(Pn−)

[
Hq(x, ξ, t) ū(p′) �n−u(p)

+ Eq(x, ξ, t) ū(p′)
iσαβn−α∆β

2mN
u(p)

]
, (2.10)

F g(x, ξ, t)

=
1

(Pn−)

∫
dλ
2π

eix(Pz) n−αn−β

× 〈p′|Gαµ
(
−z

2

)
Gβ

µ

(z
2

)
|p〉
∣∣∣
z=λn−

=
1

2(Pn−)

[
Hg(x, ξ, t) ū(p′) �n−u(p)

+Eg(x, ξ, t) ū(p′)
iσαβn−α∆β

2mN
u(p)

]
. (2.11)

In both cases the insertion of the path-ordered gauge factor
between the field operators is implied. In the LHS of (2.10)
and (2.11) the dependence of the GPDs on the normaliza-
tion point µF is suppressed for brevity. In the forward
limit, p′ = p, the contributions proportional to the func-
tions Eq(x, ξ, t) and Eg(x, ξ, t) vanish, and the distributions
Hq(x, ξ, t) and Hg(x, ξ, t) reduce to the ordinary quark and
gluon densities:

Hq(x, 0, 0) = q(x) for x > 0 ,

Hq(x, 0, 0) = −q̄(−x) for x < 0 ;

Hg(x, 0, 0) = x g(x) for x > 0 . (2.12)

Note that the gluon GPD is an even function of x,

Hg(x, ξ, t) = Hg(−x, ξ, t) .
The definition of the gluon distribution (2.11) involves

a field strength tensor and, therefore, is valid in any gauge.
But to evaluate the gluon hard-scattering amplitude, it is
convenient to consider the light-cone gauge n−A = 0. In
this gauge the parton picture which is behind the collinear
factorization formalism appears at the level of the individ-
ual diagram. One can calculate the contributions of each
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gluon diagram separately by considering photon scattering
of on-shell gluons with zero transverse momentum and the
physical, transverse, polarizations. These gluonic ampli-
tudes have to be multiplied by the light-cone matrix ele-
ment of two gauge field operators, which has the form [12]∫

dλ(Pn−)
2π

eix(Pz) 〈p′|Aa
µ

(
−z

2

)
Ab

ν

(z
2

)
|p〉
∣∣∣
z=λn−
(2.13)

=
δab

N2
c − 1

(
−g⊥

µν

2

)
F g(x, ξ, t)

(x− ξ + iε)(x+ ξ − iε)
.

Here a, b are the gluon color indices, g⊥
µν = gµν −n+µn−ν −

n−µn+ν . The iε prescription for the poles in the RHS
of (2.13) is important since corresponding singularities lie
within the integration domain and contribute to the imag-
inary part of the amplitude. In simple terms the sign of iε
can be understood in this case as being due to the substi-
tution s → s + iε, or ξ → ξ − iε. But one should notice
that such an argumentation may not work for more com-
plicated processes which have in their physical regions the
absorptive parts in variables other than the energy. For an
example and an extended discussion of this issue see [46]. In
the case of meson photo- and electroproduction the correct
sign of iε is given by (2.13).

The gluon and the quark hard-scattering amplitudes
Tg(x, ξ) and Tq(x, ξ) describe the partonic subprocesses

Ag = AγG→(Q̄Q)G (2.14)

and
Aq = Aγq→(Q̄Q)q , (2.15)

respectively.HereQ and q denote the heavy and light quark.
We have

Tg(x, ξ) =
ξ

(x− ξ + iε)(x+ ξ − iε)
Ag

(
x− ξ + iε

2ξ

)
,

Tq(x, ξ) = Aq

(
x− ξ + iε

2ξ

)
. (2.16)

In the first relation the factor ξ/((x− ξ + iε)(x+ ξ − iε))
in front of the gluon amplitude comes from the param-
eterization of the gluon matrix element in the light-cone
gauge (2.13).

Partonic amplitudes depend on two independent di-
mensionful variables, the partonic subenergy s̃ = x1s and
the meson mass M2 = ζs. Being dimensionless quantities
the partonic amplitudes can be expressed as a function of
the ratio

y =
s̃−M2

M2 =
x2

ζ
=
x− ξ

2ξ
. (2.17)

This convention is adopted in (2.16).
Another Mandelstam variable for the partonic subpro-

cess is ũ = M2 − s̃ = −x1s. The exchange between the
two channels, s̃ ↔ ũ, corresponds to the replacements
x1 ↔ −x2, or y ↔ −(1 + y), or x ↔ −x. Hard scattering
amplitudes andGPDspossess definite symmetry properties
which are closely related to charge conjugation invariance.

A photon and a vector meson have the same C parities,
which selects C even exchange in the t-channel. For gluons
only a C even GPD exists at leading twist, which is an
even function of x, as thus also the gluon hard-scattering
amplitude is even in x, Tg(x, ξ) = Tg(−x, ξ). For the quark
there exist both C even and C odd GPDs, and F q has
no definite symmetry under the exchange x ↔ −x. But
since the quantum numbers of the photon and vector meson
select theC even exchange in the t-channel, the quark hard-
scattering amplitude obeys Tq(x, ξ) = −Tq(−x, ξ). There-
fore only theC even (singlet) component of the quark GPD,
F q(+) = F q(x, ξ, t) − F q(−x, ξ, t), contributes to (2.9).

Next, we have to evaluate the partonic amplitudes Ag

and Aq. We will use the dimensional regularization method,
with D = 4 + 2ε dimensions, in order to regularize the ul-
traviolet (UV) and infrared (IR) singularities which appear
at the intermediate steps of the calculation.

At lowest order there exists only the gluon contribution.
Ag is given by the 6 tree diagrams shown in Fig. 2. A simple
calculation gives the result

A(0)
g (y) = αS(1 + ε) , (2.18)

A(0)
q (y) = 0 . (2.19)

The factor (1 + ε) in (2.18) appears since in D dimensions
there are 2(1+ε) transverse polarizations of a gluon. It has
to be substituted by 1 when A(0)

g is inserted in (2.16) to
get the LO result for the gluon hard-scattering amplitude.
However, we kept this factor in (2.18) since it is important
for the correct subtraction of the collinear and ultraviolet
counterterms in the NLO amplitudes.

3 The hard-scattering amplitudes at NLO

At LO the gluonic amplitude is a constant; it is a tree am-
plitude which has no singularities. At NLO the one-loop
gluon and quark partonic amplitudes develop a branch cut
singularities along the lines [0,+∞) and (−∞,−1] in the
complex plane of the variable y; see Fig. 4. We will use
a method based on the dispersion representation in order
to simplify the calculation of these one-loop amplitudes.
Deforming the integration contour as shown in Fig. 4 one
arrives at a representation of the amplitude which allows
one to reconstruct it as a function of the variable y from
its discontinuities along the cuts [0,+∞) and (−∞,−1].
Thanks to the symmetry properties of the partonic ampli-
tudes discussed above the contribution of the branch cut
(−∞,−1] to the dispersion integral may be expressed in
terms of the discontinuity at [0,+∞).

We will start with the quark contribution, then we
present the more complicated calculation of the gluonic
amplitude. After that we discuss the renormalization and
the subtraction of the collinear singularities which lead,
finally, to the finite results for the hard-scattering ampli-
tudes at NLO.
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Fig. 4. The analytical properties of the partonic amplitudes
at NLO in the complex plane of y = x2/ζ

3.1 The quark contribution

Thedispersion representation for the quarkNLOamplitude
A(1)

q (y) reads

A(1)
q (y) =

1
π

∞∫
0

dz Im A(1)
q (z)

(
1

z − y
− 1
z + y + 1

)
.

(3.1)
Here Im A(1)

q (z) stands for the imaginary part of the quark
amplitude in the s̃-channel of the quark subprocess. Using
the crossing symmetry property, Aq(y) = −Aq(−1−y), the
contribution of the ũ-channel discontinuity was expressed
in terms of Im A(1)

q (z); it is given by the second term on
the RHS of (3.1). For the quark amplitude one can use the
unsubtracted dispersion relation, (3.1). A(1)

q (z) ∼ const at
large z, but due to cancellation between s̃- and ũ-channel
contributions the sum of two terms in the brackets vanishes
at large z as ∼ 1/z2 while each individual term vanishes
as 1/z. Thus the dispersion integral is convergent at the
upper limit. In other words a subtraction constant is not
compatible with the symmetry properties of the quark am-
plitude.

Among the 6 diagrams which contribute to the NLO
quark amplitude only 4 diagrams have a discontinuity in
the s̃-channel. They are shown in Fig. 5. It is sufficient to
calculate the first two diagrams which contain a cut of the

Fig. 5. The s̃-channel cut diagrams for the quark amplitude

light quark and the heavy antiquark lines. The line of the
heavy quark in these diagrams is not cut since it enters
directly into the meson vertex and, therefore, is effectively
on the mass shell. The other two diagrams in Fig. 5 describe
the heavy quark cut, their contribution is identical to that
one of the first two diagrams.

We present the quark amplitude in the form

A(1)
q (y) =

α2
S CF

(4π)1+εΓ (1 + ε)

(
4m2

µ2

)ε

Iq(y) , (3.2)

here Γ (. . .) is the Euler gamma function and CF = (N2
c −

1)/(2Nc) = 4/3 is the color factor; µ is a scale introduced
by dimensional regularization. Calculating the imaginary
part we find

1
π

Im Iq(y) = 2
(

y2

1 + 2y

)ε

(3.3)

×
(

−1 + 2y
1 + y

1
ε

− 1
1 + 2y

+
3 + 8y(1 + y)

4y(1 + y)
ln(1 + 2y)

)
.

Then, inserting this equation into the dispersion integral
(3.1) we obtain the following expression for the quark am-
plitude:

Iq(y) =
2
ε
(1 + 2y)

(
ln(−y)
1 + y

− ln(1 + y)
y

)

− π2 13 (1 + 2y)
24 y (1 + y)

+
4 ln 2
1 + 2y

+ 2
ln(−y) + ln(1 + y)

1 + 2y

+ 2(1 + 2y)
(

ln2(−y)
1 + y

− ln2(1 + y)
y

)

+
3 − 4y + 16y(1 + y)

2y(1 + y)
Li2(1 + 2y)

− 7 + 4y + 16y(1 + y)
2y(1 + y)

Li2(−1 − 2y) , (3.4)

where

Li2(z) = −
z∫

0

dt
t

ln(1 − t) . (3.5)
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3.2 The gluon contribution

The analysis of the gluon contribution follows the same
lines as for the quark case. However, one has to take into
account that the gluonic amplitude is symmetric under
crossing, Ag(y) = Ag(−1 − y), and that the asymptotics
of A(1)

g (y) at large y is A(1)
g (y) ∼ y. Therefore we need a

dispersion representation of A(1)
g (y) with one subtraction.

It is convenient to perform this subtraction at y = 0, the
point where the second gluon carries zero energy, since the
calculation of the amplitude in this point may be consider-
ably simplified making use of a low energy theorem for the
radiation of a soft gluon. The dispersion representation for
the gluonic amplitude reads

A(1)
g (y) − A(1)

g (0) =
1
π

∞∫
0

dz Im A(1)
g (z)

×
(

y

z(z − y)
− y

(z + y)(z + y + 1)

)
. (3.6)

The second term in the brackets represents the contribution
of the ũ-channel cut. Due to cancelation between the s̃-
and the ũ-channel contributions the term in the brackets
vanishes as ∼ 1/z3 rather than as ∼ 1/z2 which makes the
dispersion integral convergent. Therefore one needs only
one subtraction, not two. This can also be expressed in the
following manner: the term linear in y of the subtraction
polynomial is absent, because it is not compatible with the
symmetry property of the gluonic amplitude.

It is convenient to introduce the auxiliary quantityIg(y)
defined by

A(1)
g (y) =

α2
S

(4π)1+εΓ (1 + ε)

(
4m2

µ2

)ε

Ig(y) . (3.7)

The imaginary part of the gluonic amplitude may be rep-
resented as sum of three different contributions

Im Ig(z) = Im I(Q̄Q)
g (z) + Im I(Qg)

g (z) + Im I(Q̄g)
g (z) .

(3.8)
Here Im I(Q̄Q)

g (z) represents the sum of 10 diagrams hav-
ing a Q̄Q cut in the intermediate state; see Figs. 6 and 7.
Im I(Qg)

g (z) gives the contribution of the 24 heavy quark
gluon cut diagrams and Im I(Q̄g)

g (z) is the contribution
to the imaginary part coming from the 24 cut diagrams
with the heavy antiquark and the gluon in the intermediate
state shown in Figs. 8 and 9. The latter two contributions
are equal,

Im I(Qg)
g (z) = Im I(Q̄g)

g (z) ; (3.9)

therefore it is enough to calculate only one of them – say,
ImI(Q̄g)

g (z). We define the two contributions

Ig(y) − Ig(0) = I(Q̄Q)
g (y) + 2 I(Q̄g)

g (y) , (3.10)

in accordance with (3.6), the decomposition of the imagi-
nary part (3.8), and (3.9).

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���� ����

�

Fig. 6. The contribution of the Q̄Q intermediate state to the
gluonic amplitude

L1 R1 R2

L2 R3 R4 R5

Fig. 7. The left and the right effective vertices for the Q̄Q cut

3.2.1 Q̄Q and Q̄g cut contributions

The calculation of the Q̄Q cut diagrams shown in Figs. 6
and 7 gives

1
π

Im IQ̄Q
g (y) = (y)εΘQ̄Q

g (y) , (3.11)

where

ΘQ̄Q
g (y) = −

√
y(1 + y)
y(1 + y)

(
c1

7
2

+ c2

(
3
y

+ 1
))

(3.12)

+
arctanh

√
y

1+y

y(1 + y)

(
c1

(
−3

2
+ 2y

)
+ c2

(
3
y

+ 6 + 2y
))

.

Here for brevity we denote two independent color struc-
tures by

c1 = CF , c2 = CF − CA

2
= − 1

2Nc
. (3.13)

Inserting this result into the dispersion integral (3.6)
we obtain

IQ̄Q
g (y) = −5c1 − 3 + 2y(1 + y)

y(1 + y)
c2

+π
√−y(1 + y)
y(1 + y)

(
7
2
c1 − 3c2

)
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+π2
(

3 − 4y(1 + y)
8y(1 + y)

c1

− 3 + y(1 + y)(9 − y(1 + y))
4y2(1 + y)2

c2

)

+2c2

√−y(1 + y)
y(1 + y)

(3.14)

×
(

1 + 4y
1 + y

arctan
√ −y

1 + y
+

3 + 4y
y

arctan
√

1 + y

−y
)

−
arctan2

√
−y
1+y

2y(1 + y)

(
(7 + 4y)c1 − 2

1 + 2y − 2y2

1 + y
c2

)

−
arctan2

√
1+y
−y

2y(1 + y)

(
(3 − 4y)c1 − 2

3 + 6y + 2y2

y
c2

)
.

Some words about the calculation of integral (3.6) for
IQ̄Q

g are in order. Since Im IQ̄Q
g (z) ∼ zε−1/2 at small z,

the contribution of the region z ≤ δ (where δ � 1) to the
dispersion integral is of the order

∼
δ∫

0

dz zε− 3
2 =

δε− 1
2

ε− 1
2

∣∣∣∣∣
ε→0

→ − 2√
δ
. (3.15)

However, this contribution to IQ̄Q
g , which is singular for

δ → 0, cancels with the one coming from the region z ≥ δ
and we arrive at the finite result given by (3.14).

The appearance of integrals like (3.15) is related to
a phenomenon well known in quarkonium physics. The
gluon exchange between the non-relativistic quark pair con-
tains the Coulomb-like instantaneous contribution. In the
NRQCD formalism its contribution has to be subtracted
from the hard part of the amplitude. Let us discuss the
corresponding counterterm.

In a frame where theQQ̄ system is at rest the momenta
of the heavy quarks are

q1 = (m+ ε,p) , q2 = (m+ E − ε,−p) , (3.16)

where E denotes the non-relativistic energy of the pair.
The LO amplitude has the form

MLO = C

∫
dpΨ(p) . (3.17)

Here C is some factor and Ψ(p) is the non-relativistic wave
function of the QQ̄ system in momentum representation.
The integral (3.17) is proportional to the value of the wave
function at the origin∫

dpΨ(p) ∼ RS(0) . (3.18)

Now consider the αS correction. The momenta of the
quarks after the gluon exchange are

q′
1 = (m+ ε′,p′) , q′

2 = (m+ E − ε′,−p′) . (3.19)
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Fig. 8. The contribution of the Q̄g intermediate state to the
gluonic amplitude

For the non-relativistic system the energy and the mo-
mentum variables scale as E, ε, ε′ ∼ mv2; |p|, |p′| ∼ mv.
With NLO accuracy the amplitude can therefore be written
as follows

MNLO = C

∫
dpΨ(p)

×

1 − αSCF

2π2(2π)2ε

∫
dp′ 1

(p − p′)2
[
E − p′2

m + i0
]

+ O(αSv
0)


 . (3.20)

The first term on the RHS of (3.20) is the LO contribution,
the second and the third terms represent the NLO correc-
tion. The latter is finite at v → 0. The second term of (3.20)
scales ∼ αSCF/v; it comes from the instantaneous Coulomb
exchange. Equation (3.20) can be easily derived considering
the integral over the loop momentum, d4+2εq′

1 = dε′dp′,
and using the non-relativistic limit for the quark propaga-
tors. After integration over the loop energy ε′ we arrive at
the expression given above for the Coulomb contribution.
It can be recognized as the exchange potential responsible
for the formation of a non-relativistic meson bound state.
Indeed, the Schrödinger equation in momentum represen-
tation reads(

E − p′2

m

)
Ψ(p′) = − αSCF

2π2(2π)2ε

∫
dp

Ψ(p)
(p − p′)2

.

(3.21)
The second term in (3.20), the Coulomb counterterm, inte-
grated over dpproduces theLOcontribution,C

∫
dp′Ψ(p′),

which is already taken into account in the first term.
Therefore the Coulomb counterterm has to be subtracted
from (3.20). After that one can put the quark pair on the
mass shell; v,E → 0, and p → 0.

The advantage of using dimensional regularization is
that the quark pair may be put on the mass shell even
before the subtraction of the Coulomb counterterm. Since
atE = 0, and p = 0 the Coulomb counterterm becomes the
scaleless integral, ∼ ∫

dp′/p′4 → 0, it has to be put equal to
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L1 L2 L3 L4

L5 L6 L7 L8

R1 R2 R3 Fig. 9. The left and the right effective vertices for the Q̄g cut

zero according to the rules of the dimensional regularization
method. That means that the Coulomb counterterm is zero
in this scheme.1 The price to be paid for the simplification
is the appearance of integrals like (3.15). They have to be
treated as described above. We encountered integrals of
this kind also in the calculation of Ig(0).

Now we proceed to the calculation of IQ̄g
g . The imagi-

nary part related with the Q̄g cut presented in Figs. 8 and
9 reads

1
π

Im IQ̄g
g (y) =

(
y2

1 + 2y

)ε

ΘQ̄g
g (y) , (3.22)

where

ΘQ̄g
g (y) = −2

1 + 2y(1 + y)
1 + y

(
c1 − c2
ε

)
− 5c1 − 4c2

4

− 4(c1 − c2)y +
3c2
y

+
3c1 − c2
2(1 + y)

+
5c1

4(1 + 2y)
− c1

4(1 + 2y)2

+
(

3c1 − 4c2
2

+ 4(c1 − c2)y

+
9c1 − 22c2

8y
+

5c1 − 2c2
8(1 + y)

− c1
2(1 + 2y)

− 3c2
4y2 − c1 − 2c2

4(1 + y)2

)
ln(1 + 2y)

1 We are grateful to Maxim Kotsky for the discussion of
this issue.

−1
6
(c1 − c2)(45 − 2π2)ε . (3.23)

Expanding ΘQ̄g
g (y) in ε one needs to keep, in the limit of

small y, the terms which are up to linear in ε, since in
the dispersion integral (3.6) they produce the contribution
∼ ε0. Calculating the dispersion integral with Im I(Q̄g)

g

we obtain

IQ̄g
g (y) =

c1 − c2
ε2

+
c1 − c2

4ε

×
{

1 + 8(1 + 2y(1 + y))
(

ln(−y)
1 + y

− ln(1 + y)
y

)}

− c1
4

+ c2
3 + 7y(1 + y)

2y(1 + y)

− π2
[
c1

2 + y(1 + y)(43 + 100y(1 + y))
96y2(1 + y)2

− c2
8 + y(1 + y)(47 + 61y(1 + y))

48y2(1 + y)2

]

−
[
c1

1 + 2y(1 + y)(5 + 14y(1 + y))
2y(1 + y)(1 + 2y)2

+ c2
1 + 2y(1 + y)

2y(1 + y)

]
ln(2)

+ 2(c1 − c2)
(
1 + 2y(1 + y)

)( ln2(−y)
1 + y

− ln2(1 + y)
y

)

+ a1(y) ln(−y) + a1(−1 − y) ln(1 + y) (3.24)
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+a2(y)Li2(1 + 2y) + a2(−1 − y)Li2(−1 − 2y) ,

where the functions a1 and a2 are given by the following ex-
pressions:

a1(y) =
c1
4

(
5 + 16y − 6

1 + y
+

1
(1 + 2y)2

− 5
1 + 2y

)

−c2
2

(
2 +

3
y

+ 8y − 1
1 + y

)
, (3.25)

a2(y) =
c1
8

(3.26)

×
(

12 +
9
y

+ 64 y − 2
(1 + y)2

+
21

1 + y
− 4

1 + 2y

)

−c2
4

(
8 +

3
y2 +

11
y

+ 32 y − 2
(1 + y)2

+
9

1 + y

)
.

Equations (3.14) and (3.24) define the RHS of (3.10). To
finish our consideration of the gluon contribution one still
needs to evaluate Ig(0), the one-loop amplitude describing
the emission of a soft gluon.

3.2.2 The emission of a soft gluon

The idea of our method is inspired by the famous result of
Low [44], known as the low energy theorem for radiation of
a photon. The arguments of Low may be used to constrain
the amplitude describing the emission of a soft gluon. In the
non-abelian case, due to the confinement phenomenon, the
corresponding result has not such a fundamental meaning
as in QED. Nevertheless, it can be useful, for problems
treatable by perturbative methods. We will first explain
the essential steps of our approach for a simple example,
namely the calculation of the LO gluonic amplitude (2.18).
Then we proceed to the evaluation of Ig(0).

Let us consider the gluonic process

γ(q)G(x1p) → V (K)G(x2p) (3.27)

at LO in the limit when the emitted gluon is soft; x2 →
0, x1 → ζ. With respect to the soft gluon the diagrams in
Fig. 2 may be divided into three groups. In diagrams (a)
and (b) the soft gluon is radiated from the on-shell quark
line, in diagrams (c) and (d) it is attached to the on-shell
antiquark line, whereas in diagrams (e) and (f) the soft
gluon is emitted from the virtual antiquark and the virtual
quark lines, respectively. In the first two cases the quark
propagator attached to the soft gluon vertex is close to
the mass shell. We call them pole contributions, contrary
to the third non-pole case, which describes the emission
of the soft gluon from the internal part of the process.2
Our idea is to calculate the amplitude of the process (3.27)
in the soft gluon limit considering the pole contributions

2 Due to color neutrality of the two gluons in the process (3.27)
the emission of gluon G(x2p) from the on-shell line of gluon
G(x1p) is forbidden, thus in our case there is no gluon pole con-
tribution.

only. Below we will show how using gauge invariance the
non-pole contributions may be derived from the pole ones.

Neglecting the proton mass and ∆⊥ one has

p = (1 + ξ)W n+ , q =
W

2(1 + ξ)
n− , K = q + ζp .

(3.28)
For the photon polarization vector we choose the gauge
(eγp) = 0; hence eγ = e⊥

γ . Since we are interested in the
helicity non-flip amplitude the meson polarization vector
can also be chosen transverse, eV = e⊥

V .
For the process (3.27) in collinear kinematics it happens

that for the pole contributions a pole factor 1/x2 coming
from the denominator of the quark propagator is compen-
sated by the factor x2 from the nominator. This means that
contributions of both the pole and the non-pole diagrams
are regular at x2 → 0 and that both classes of diagrams
contribute to the amplitude on an equal footing. However
in order to apply our method we need to have a pole fac-
tor in the pole contributions. For this purpose we change
the kinematics of the process (3.27) slightly away from the
collinear one introducing the small transverse component
to the momenta of the photon and the soft gluon:

q → q′ = q + k⊥ , x2p → k = x2p+ k⊥ . (3.29)

Note that this replacement makes the photon and the soft
gluon lines slightly virtual, q′2 = k2 = k2

⊥. But this effect
is quadratic in k⊥ and, therefore, it is small and can be
safely neglected, as we will always do below.

The change of the photon momentum (3.29) leads to
the following replacement in the expression for the photon
polarization vector:

eγ = e⊥
γ → e′

γ = e⊥
γ − (e⊥

γ k⊥)
(pq)

p , (e′
γq

′) = 0 . (3.30)

We denote the polarization vectors of the gluons with mo-
menta x1p and k by e1g and e2g,

(e1g p) = 0 , (e2g k) = 0 , (3.31)

and choose a gauge such that (e1g q) = (e2g q) = 0 . Thus, the
polarization vector of the first gluon is transverse, e1g = e1⊥

g ,
whereas the polarization vector of the soft gluon contains
both a transverse and a longitudinal component. e2g is trans-
verse only in the collinear limit: e2g → e2⊥

g at k⊥ → 0 .
Let us consider one of the pole diagrams, say, diagram

(b). Its contribution to the gluonic amplitude reads

A(b) = D Sp
[
�e2g

�K/2+ �k +m

(K/2 + k)2 −m2 �e1g (3.32)

× �K/2+ �k − x1�p+m

(K/2 + k − x1p)2 −m2 �e ′
γ �e∗

V (�K +M)
]

;

here D is some factor which is irrelevant for our argumen-
tation. The first propagator on the RHS of (3.32) is the
propagator of the quark attached to the soft gluon vertex.
Its denominator, (K/2+k)2 −m2 = (kK), vanishes in the
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soft gluon limit. In accordance with the nominator of this
propagator we define two contributions

A(b) = Aadd
(b) +Az

(b) , (3.33)

where

Aadd
(b) = D Sp

[
�e2g

�K/2 +m

(K/2 + k)2 −m2 �e1g

× �K/2+ �k − x1�p+m

(K/2 + k − x1p)2 −m2 �e ′
γ �e∗

V (�K +M)
]
,

Az
(b) = D Sp

[
�e2g

�k
(K/2 + k)2 −m2 �e1g

× �K/2+ �k − x1�p+m

(K/2 + k − x1p)2 −m2 �e ′
γ �e∗

V (�K +M)
]
.

Commuting in the first term the factors �e2g and (�K/2+m)
we obtain

Aadd
(b) = D

(e2gK)
(kK)

(3.34)

× Sp
[
�e1g

�K/2+ �k − x1�p+m

(K/2 + k − x1p)2 −m2 �e ′
γ �e∗

V (�K +M)
]
.

The trace on the RHS of (3.34) vanishes linearly in k.
Indeed, using the properties of the polarization vectors
discussed above it is easy to see that

Aadd
(b) = −D

m

(e2gK)
(kK)

Sp
[�e1g �k �e ′

γ �e∗
V

]
+ O(k) . (3.35)

Similarly, for the second term we obtain

Az
(b) = − D

m (kK)
Sp
[�e2g �k �e1g �e ′

γ �e∗
V �K]+ O(k) . (3.36)

Aadd
(b) vanishes in the collinear kinematics since at k⊥ → 0:

k → x2p, e2g → e2⊥
g and (e2gK) → 0 . However, for k⊥ �= 0

both contributions to A(b) are of the same order. Note that
Az

(b) is finite for k⊥ = 0 and x2 → 0.
The consideration of the other pole diagrams follows

the same lines. We calculated, similar to (3.35) and (3.36),
the corresponding contributions to Aadd and Az of each
pole diagram. The total gluonic amplitude is

A ≡ e2, µ
g Aµ = e2, µ

g
[
Aadd

µ +Az
µ +An−pole

µ

]
, (3.37)

where the first two terms represent the pole contributions,
and the third term stands for the contribution of the non-
pole diagrams. The latter can be obtained from Aadd

µ using
gauge invariance. Due to current conservation we have

kµAµ = 0 . (3.38)

Since
kµAz

µ = 0 (3.39)

by construction, see (3.33) and (3.36), we obtain

kµAadd
µ = −kµAn−pole

µ . (3.40)

In its turn Aadd
µ has the form

Aadd
µ =

Kµ

(kK)
(kP ) , Pµ =

∑
i

Pµ
i . (3.41)

The vector P receives contributions from the pole dia-
grams enumerated by the index i. For instance, according
to (3.35), the contribution of diagram (b) is

Pµ
(b) = −D

m
Sp
[�e1g �γµ �e ′

γ �e∗
V

]
. (3.42)

Similarly, we denote the contributions of separate pole di-
agrams to Az as Az

i ,

Az =
∑

i

Az
i . (3.43)

From (3.40) and (3.41) we deduce that

An−pole
µ = −Pµ . (3.44)

Thus we have shown how in the soft gluon limit the con-
tribution of the non-pole diagrams can be derived without
explicit calculations.

Returning to the collinear kinematics, we have

A|k⊥→0 = e2 ⊥ , µ
g

[
Az

µ − Pµ

]∣∣
k⊥→0

, (3.45)

here we used that Aadd vanishes at k⊥ → 0. Thus, the
first term in (3.45) represents the contribution of the pole
diagrams in the collinear limit whereas the second term,
∼ Pµ, restores the non-pole contribution to the gluonic
amplitude in this limit.

Finally, to obtain the gluon hard-scattering amplitude
A(0)

g (y = 0) one needs to perform the summation over
2 + 2ε transverse polarizations of the gluons (e1 ⊥ , µ

g , λ =
e2 ⊥ , µ
g , λ , λ = 1, . . . , 2 + 2ε) in the amplitude of the gluonic

process A|k⊥→0, and then take the limit x2 → 0.
Proceeding separately for each pole diagram with these

steps, including the summation over the gluon polariza-
tions, we find

A(0)
g (y = 0) =

∑
i

Di , Di = Dz
i +Dadd

i , (3.46)

where Di stands for the contribution to the gluon hard-
scattering amplitude of the individual diagram. Dz

i and
Dadd

i corresponds to the contribution of the pole diagram
i to Az

µ and Pµ respectively. After a simple calculation
we find

Dz
(b) = Dz

(d) = Dadd
(b) = Dadd

(d) =
αS(1 + ε)

4
,

Dz
(a) = Dz

(c) = Dadd
(a) = Dadd

(c) = 0 . (3.47)

Thus we confirm (2.18). Calculating contributions of the
non-pole diagrams (e) and (f) directly one can check that
the non-pole contribution is indeed correctly restored by
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∑
iD

add
i . Although it is very simple this calculation con-

tains all essential points of our method.
Now we proceed with this method to the evaluation

of Ig(0). The one-loop diagrams describing the radiation
of a soft gluon from the on-shell antiquark line are shown
in Fig. 10. A similar set of diagrams can be drawn for
the radiation of the soft gluon from the on-shell quark line.
Since these two sets of diagrams transform into one another
under the charge parity transformation, it is enough to
calculate one of them, say, those in Fig. 10 and then to
double the result.

The results of our calculation of the contributions of
individual antiquark pole diagrams are summarized in Ta-
bles 1 and 2. Using our procedure we obtained for each
diagram D1, . . . , D11 two quantities Dz

i and Dadd
i .3

Besides soft and collinear singularities the one-loop glu-
onic amplitude contains also ultraviolet poles which have
to be subtracted in the on-shell scheme. The full renormal-
ization procedure includes mass counterterm diagrams, the
renormalization of the heavy quark field and the renormal-
ization of the strong coupling constant. The field and the
coupling renormalization will be discussed later, together
with the factorization of collinear singularities.

Here we will consider the mass counterterm diagrams.
This can be done in our method by considering only mass
counterterm diagrams having an antiquark pole in the soft
gluon limit. They are shown in Fig. 11. Thus, similar to
Dz

i and Dadd
i , we have in Table 2 two contributions for

the diagrams C2 and C4. Below we show that the sets of
diagrams D12, D14, D16 and D13, D15, D17 together with
the mass counterterm diagrams C1 and C3 add up to two
combinations which are gauge invariant. These sets are
the separate gauge invariant contributions which can be
calculated, similar to Dz

i , directly in the collinear limit.
At the one-loop level the mass and quark field renor-

malization constants are equal [47]

δm
m

= δZ2 = − αS CF

(4π)1+ε

(
m2

µ2

)ε(3 + 2ε
1 + 2ε

)
Γ [−ε] . (3.48)

Mass counterterm diagrams are multiplied by δm/m. Let
us consider

(
D12 + C1

δm
m +D14 +D16

)
and (D13+C3

δm
m +

D15 +D17), which represent the one-loop correction to the
soft gluon vertex

(igta) → (igta)
(

1 +
αS Γ [1 − ε]

(4π)1+ε

(
m2

µ2

)ε

w

)
�e2g , (3.49)

where w = w1 +w2 +w3, multiplied by the LO antiquark
pole diagramsB1 andB2 shown in Fig. 12. After a straight-
forward calculation we obtain4

w1 =

3 The diagrams D2, D3 include the instantaneous Coulomb
exchange which we treated in dimensional regularization as
discussed above.

4 Note that w1 is finite for k → 0 only if the mass counterterm
diagram is included.

= c1

[
3 + 2ε
ε(1 + 2ε)

]
, (3.50)

w2 =

= c2

[
− 3 + 2ε
ε(1 + 2ε)

− �k
m

(
1 − 2ε
1 + 2ε

)]
, (3.51)

w3 =

= (c1 − c2)
[
− 3 + 2ε
ε(1 + 2ε)

+
�k
m

(
1 − ε

ε(1 + 2ε)

)]
.

(3.52)

The sum of these contributions equals

w =
(
c1 − c2
ε

− 3c1 + 2c2 + O(ε)
) �k
m

. (3.53)

We found that for the one-loop correction to the soft gluon
vertex the contributions ∼�e2g cancel. What is left is ∼�k�e2g,
which means that the part ∼ αS of (3.49) is gauge invariant.
Inserting it into the LO diagrams B1 and B2 we obtained
the results presented in the first two lines of Table 2.

Note that in the abelian case c1, c2 = 1, and, according
to (3.53), the correction to the soft vertex is finite at ε → 0.
It corresponds to the contribution of a fermion anomalous
magnetic moment, α/(2π), which is in accordance with the
general statement of Low’s theorem in QED. In the non-
abelian case this contribution has no such clear physical
meaning, since it is infrared divergent.

Finally, summing all contributions in Tables 1 and 2
and multiplying the result by a factor 2 (thus taking into
account the quark pole diagrams) we arrive at the following
expression for the gluonic amplitude at x2 = 0:

Ig(0) = −2
c1 − c2
ε2

− 7c1 − c2
2ε

+c1

(
−3

2
+

3π2

4
+ 10 ln(2)

)

−c2
(

5 +
5π2

8
+ 2 ln(2)

)
. (3.54)

3.3 NLO results

Let us discuss the structure of singularities of the parton
amplitudes. First of all note that, according to (3.10), the
double pole terms which are present in (3.54) and (3.24)
cancel. Thus, the gluonic amplitude as well as the quark
one contains only single poles in ε. This means that soft
singularities present in the individual contributions cancel
in the final expressions for the NLO parton amplitudes.
What is left are the single poles in ε which, as we show
below, represent the ultraviolet and collinear singularities.
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D1 D2 D3 D4 D5 D6

D7 D8 D9 D10 D11 D12

D13 D14 D15 D16 D17

Fig. 10. Diagrams Di, describing the radiation of a soft gluon from the on-shell antiquark line

C1 C2

C3 C4

Fig. 11. Mass counterterm diagrams which have an antiquark
pole in the soft gluon limit

B1 B2

Fig. 12. LO antiquark pole diagrams

To demonstrate the validity of factorization one needs
to check that the ultraviolet poles are removed by the heavy
quark field and the strong coupling renormalization, and
that the collinear poles are absorbed into the quark and
gluon GPDs. For this purpose let us recall the structure of
the factorization formula

M ∼
1∫

−1

dx
[(
T̃ (0)

g (x, ξ) + T̃ (1)
g (x, ξ)

)
F̃ g(x, ξ, t)

+ T̃ (1)
q (x, ξ)F̃ q,S(x, ξ, t)

]
, (3.55)

where the tilde indicates that the renormalization and the
separation of the collinear singularities has not yet been
performed. The bare hard-scattering amplitudes are

T̃ (0)
g (x, ξ) =

ξ

(x− ξ)(x+ ξ)
A(0)

g

(
x− ξ

2ξ

)

=
ξ

(x− ξ)(x+ ξ)
αS(1 + ε) ,

T̃ (1)
g (x, ξ) =

ξ

(x− ξ)(x+ ξ)
A(1)

g

(
x− ξ

2ξ

)
,

T̃ (1)
q (x, ξ) = A(1)

q

(
x− ξ

2ξ

)
; (3.56)

hereA(1)
q is definedby (3.7) and (3.10), and theNLOgluonic

amplitude A(1)
g by (3.7), (3.10), (3.14), (3.24) and (3.54).
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Table 1. Contributions to Ig(0) of diagrams D1, . . . , D11

Diagram ε−2 ε−1 ε0

Dz
1 − 3

8 (c1 − c2) − 3
8 (c1 − c2) (c1 − c2)

(
π2
16 + 5 ln(2)

4

)

Dadd
1 − 3

8 (c1 − c2) − 3
8 (c1 − c2) (c1 − c2)

(
− 1

2 + π2
4 + 7 ln(2)

2

)

Dz
2 0 − 1

4c2 c2
(
− 3

4 + π2
32 + ln(2)

2

)

Dadd
2 0 − 3

4c2 c2
(
− 9

4 − 3π2
32 + 13 ln(2)

4

)

Dz
3 0 0 c2

(
− 1

4 − π2
32 + ln(2)

)

Dadd
3 0 0 c2

(
1
4 + 3π2

32 − ln(2)
4

)

Dz
4 0 − 1

4c1 c1
(
− 1

4 + π2
16

)

Dadd
4 0 − 1

4c1 c1
(
− 1

8 + π2
32 − ln(2)

2

)

Dz
5 0 0 0

Dadd
5 0 0 c1

(
1
8 − π2

32 − ln(2)
2

)

Dz
6 0 5

8c1 c1
(
− 1

8 − ln(2)
4

)

Dadd
6 0 13

16c1 c1
(
− 1

8 − ln(2)
8

)

Dz
7 0 0 c1

3
8

Dadd
7 0 3

16c1 c1
(
− 3

8 + ln(2)
8

)

Dz
8 0 − 1

4c2 c2
(
− 1

4 + π2
16 − ln(2)

2

)

Dadd
8 0 − 1

4c2 c2
(

1
4 − π2

16 − 3 ln(2)
4

)

Dz
9 0 0 0

Dadd
9 0 0 −c2 ln(2)

4

Dz
10

1
8 (c1 − c2) − 3

8 (c1 − c2) (c1 − c2)
(

1
2 − ln(2)

2

)

Dadd
10 − 3

8 (c1 − c2) − 3
8 (c1 − c2) −(c1 − c2)

(
1
2 + 3 ln(2)

8

)

Dz
11 0 0 0

Dadd
11 0 0 −(c1 − c2) 3 ln(2)

8

Table 2. Contributions to Ig(0) ofD12, . . .,D17 and the mass counterterm diagrams

Diagram ε−1 ε0

(
D12 + C1

δm
m

+D14 +D16
) − 1

4 (c1 − c2) c1
(

1
2 + ln(2)

2

)
− c2

(
1
4 + ln(2)

2

)

(
D13 + C3

δm
m

+D15 +D17
)

0 −(c1 − c2) 1
4

Cz
2

δm
m

− 3
8c1 c1

(
1
8 + 3 ln(2)

4

)

Cadd
2

δm
m

− 9
16c1 c1

9 ln(2)
8

Cz
4

δm
m

0 −c1 3
8

Cadd
4

δm
m

− 3
16c1 c1

(
1
4 + 3 ln(2)

8

)

In (3.56) and in some equations below we suppress for
brevity the iε prescriptions; they are easily restored by the
replacement ξ → ξ − iε.

The factorization of the collinear singularities corre-
sponds to the substitution, in accordancewith thedefinition
of GPDs, of the bare quantities F̃ q,S(x, ξ, t), F̃ g(x, ξ, t) by
the renormalized ones. In themodifiedminimal-subtraction

(MS) scheme one has at the one-loop level

F̃ q,S(x, ξ, t) = F q,S(x, ξ, t, µF)

− αS(µF)
2π

(
1
ε̂

+ ln
(
µ2

F

µ2

))
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×
1∫

−1

dv
[
Vqq(x, v)F q,S(v, ξ, t, µF)

+Vqg(x, v)F g(v, ξ, t, µF)
]
, (3.57)

F̃ g(x, ξ, t) = F g(x, ξ, t, µF)

− αS(µF)
2π

(
1
ε̂

+ ln
(
µ2

F

µ2

))

×
1∫

−1

dv
[
Vgg(x, v)F g(v, ξ, t, µF)

+Vgq(x, v)F q,S(v, ξ, t, µF)
]
, (3.58)

where Vqq, Vgg, Vgq, Vqg denote the one-loop evolution ker-
nels. We have

1
ε̂

=
1
ε

+ γE − ln(4π) ; (3.59)

γE is Euler’s constant. Inserting (3.57) and (3.58) into (3.55)
and truncating the series at the order α2

S we found the
following collinear counterterms to the gluon and quark
hard-scattering amplitudes

∆col
g (x, ξ) = (3.60)

− αS

2π

(
1
ε̂

+ ln
(
µ2

F

µ2

)) 1∫
−1

dv T̃ (0)
g (v, ξ)Vgg(v, x) ,

∆col
q (x, ξ) = (3.61)

− αS

2π

(
1
ε̂

+ ln
(
µ2

F

µ2

)) 1∫
−1

dv T̃ (0)
g (v, ξ)Vgq(v, x) .

Note that, since T̃ (0)
q = 0 for our process, the renormal-

ization of the quark GPD (3.57) does not generate con-
tributions (∼ Vqq, Vqg) to the collinear counterterms. Cal-
culating the integrals (3.60) and (3.61) with these kernels
we obtain

∆col
g (x, ξ) = −α2

S

2π
ξ

(x− ξ)(x+ ξ)

(
1
ε̂

+ 1 + ln
(
µ2

F

µ2

))

×
[
Nc Cg

(
x− ξ

2ξ

)
+
β0

2

]
, (3.62)

∆col
q (x, ξ) = −α2

S

2π

(
1
ε̂

+ 1 + ln
(
µ2

F

µ2

))
CF Cq

(
x− ξ

2ξ

)
,

(3.63)

where
β0 =

11Nc

3
− 2nf

3
; (3.64)

nf is an effective number of light quark flavors, and

Cg(y) = (1 + 2y(y + 1))
(

ln(−y)
1 + y

− ln(1 + y)
y

)
,

Cq(y) = (1 + 2y)
(

ln(−y)
1 + y

− ln(1 + y)
y

)
. (3.65)

For the renormalization of the strong coupling one has
to substitute the bare coupling constant αS by the running
coupling αS(µR) in the MS scheme,

αS = αS(µR)
[
1 +

αS(µR)
4π

β0

(
1
ε̂

+ ln
(
µ2

R

µ2

))]
. (3.66)

This substitution generates the following counterterm to
the gluon hard-scattering amplitude:

∆αS
g (x, ξ) =

α2
S

4π
ξ

(x− ξ)(x+ ξ)

(
1
ε̂

+ 1 + ln
(
µ2

R

µ2

))
β0 .

(3.67)
To account for the heavy quark field renormalization effect
one has to add the counterterm

∆Z2
g (x, ξ) = δZ2 T̃

(0)
g (x, ξ) , (3.68)

with δZ2 given in (3.48).
In the sum of the bare hard-scattering amplitudes and

the counterterms described above all poles in ε cancel.
Thus, we can now take the limit ε → 0:

Tg(x, ξ)

=
[
T̃g(x, ξ) +∆col

g (x, ξ) +∆αS
g (x, ξ) +∆Z2

g (x, ξ)
]

ε→0
,

Tq(x, ξ) =
[
T̃q(x, ξ) +∆col

q (x, ξ)
]

ε→0
, (3.69)

and arrive at finite results for the hard-scattering ampli-
tudes:

Tq(x, ξ) =
α2

S(µR)CF

2π
fq

(
x− ξ + iε

2ξ

)
, (3.70)

fq(y)

=
(

ln
4m2

µ2
F

− 1
)

(1 + 2y)
(

ln(−y)
1 + y

− ln(1 + y)
y

)

− π2 13(1 + 2y)
48y(1 + y)

+
2 ln 2
1 + 2y

+
ln(−y) + ln(1 + y)

1 + 2y

+ (1 + 2y)
(

ln2(−y)
1 + y

− ln2(1 + y)
y

)

+
3 − 4y + 16y(1 + y)

4y(1 + y)
Li2(1 + 2y)

− 7 + 4y + 16y(1 + y)
4y(1 + y)

Li2(−1 − 2y) (3.71)

for the quark, and

Tg(x, ξ) =
ξ

(x− ξ + iε)(x+ ξ − iε)
(3.72)

×
[
αS(µR) +

α2
S(µR)
4π

fg

(
x− ξ + iε

2ξ

)]
,
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fg(y)

= 4(c1 − c2)
(
1 + 2y(1 + y)

)( ln(−y)
1 + y

− ln(1 + y)
y

)

×
(

ln
4m2

µ2
F

− 1
)

+ β0 ln
µ2

R

µ2
F

+ 4(c1 − c2)
(
1 + 2y(1 + y)

)( ln2(−y)
1 + y

− ln2(1 + y)
y

)
− 8c1

− π2
(

2 + y(1 + y)(25 + 88y(1 + y))
48y2(1 + y)2

c1

+
10 + y(1 + y)(7 − 52y(1 + y))

24y2(1 + y)2
c2

)

−
[
c1

1 + 6y(1 + y)(1 + 2y(1 + y))
y(1 + y)(1 + 2y)2

+ c2
(1 + 2y)2

y(1 + y)

]
ln(2)

+ π
√−y(1 + y)
y(1 + y)

(
7
2
c1 − 3c2

)

+ 2c2

√−y(1 + y)
y(1 + y)

×
(

1 + 4y
1 + y

arctan
√ −y

1 + y
+

3 + 4y
y

arctan
√

1 + y

−y
)

−
arctan2

√
−y
1+y

2y(1 + y)

(
(7 + 4y)c1 − 2

1 + 2y − 2y2

1 + y
c2

)

−
arctan2

√
1+y
−y

2y(1 + y)

(
(3 − 4y)c1 − 2

3 + 6y + 2y2

y
c2

)

+ 2 a1(y) ln(−y) + 2 a1(−1 − y) ln(1 + y) (3.73)

+ 2 a2(y)Li2(1 + 2y) + 2 a2(−1 − y)Li2(−1 − 2y)

for the gluon. a1(y), a2(y) are defined in (3.25) and (3.26).
The expressions in (3.70)–(3.73) represent the main result
of this paper.

At high energies, W 2 � M2, the imaginary part of the
amplitude dominates. The leading contribution to the NLO
correction comes from the integration region ξ � |x| � 1.
Simplifying the gluon (3.73) and the quark (3.71) hard-
scattering amplitudes in this limit we obtain the estimate

M ≈ −4 i π2
√

4πα eq(e∗
V eγ)

Nc ξ

( 〈O1〉V

m3

)1/2

×


αS(µR)F g(ξ, ξ, t)

+
α2

S(µR)Nc

π
ln
(
m2

µ2
F

) 1∫
ξ

dx
x
F g(x, ξ, t)

+
α2

S(µR)CF

π

(
ln
(
m2

µ2
F

)
− 1

)
(3.74)

×
1∫

ξ

dx
(
F q,S(x, ξ, t) − F q,S(−x, ξ, t))


 .

Given the behavior of the gluon and the quark GPDs at
small x, F g(x, ξ, t) ∼ const and F q,S(x, ξ, t) ∼ 1/x, we see
from (3.74) that the relative value of the NLO correction
is parameterically large at small ξ,

∼ αS(µR)Nc

π
ln
(

1
ξ

)[
ln
(
m2

µ2
F

)
(3.75)

+
CF

Nc

(
ln
(
m2

µ2
F

)
− 1

)
F q,S(ξ, ξ, t) − F q,S(−ξ, ξ, t)

F g(ξ, ξ, t)

]
.

The gluon correction in (3.75) is negative unless one chooses
a value of the factorization scale µF < m, which is substan-
tially smaller than the kinematic scaleM = 2m. The quark
correction is also parameterically large at high energies. It
is expected to be sizable since it collects the contributions
of all the light quarks and antiquarks. These qualitative
observations are supported by the numerical analysis.

4 Numerical analysis

We assume as values of the quark pole masses mc =
1.5 GeV, mb = 4.9 GeV. 〈O1〉V was evaluated using (1.2)
with αS = αS(µR). For the generalized parton distribu-
tions we adopt the parameterizations, evolved both in LO
and NLO, of [48] that are based on the CTEQ6 set of
forward distributions [49]. We neglect the contributions
proportional to Eq(x, ξ, t) and Eg(x, ξ, t). In the numerical
calculations we use LO strong running coupling and LO
GPDs and NLO coupling and NLO GPDs for LO and NLO
observables correspondingly.

Let us start with Υ photoproduction. We calculate with
our formulas the forward amplitude and the forward dif-
ferential cross section, dσ/d∆2

⊥ at ∆⊥ = 0. For the ∆⊥
dependence we assume, in accordance with the measure-
ments at HERA, the simple exponential

dσ
d∆2

⊥
=

(
dσ

d∆2
⊥

∣∣∣∣
∆⊥=0

)
e−b∆2

⊥ , σ =
1
b

(
dσ

d∆2
⊥

∣∣∣∣
∆⊥=0

)
.

(4.1)
For the slope parameter we use b = 4.4 GeV−2.

In Fig. 13 the LO predictions for the total cross section
of Υ photoproduction are shown as a function of energy,
the data points are from ZEUS [5] and H1 [6]. The curves
correspond to different values of the factorization scale µF
which is chosen equal toµR. The experimental uncertainties
are large. We find that for the broad interval of scales,
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Fig. 13. The cross section for Υ photoproduction; the theo-
retical predictions at LO for the scales µF = µR = [1.3, 7] GeV
(ranging from bottom to top), and the data are from ZEUS [5]
and H1 [6]

µF = µR = 1.3 ÷ 7 GeV, our LO predictions lie within
the experimental error bars. The strong dependence of the
predictions on the factorization scale is related to the well
known fact that scaling violation is large for small x. At
small x the gluon density increases rapidly with growing µF
which leads to an increase of the LO predictions with µF.
In Fig. 14 we present the results of the NLO calculations
for the same set of scales. For meson production in NLO
this effect is partially compensated, as it should be, due to
the dependence of the gluon and the quark hard-scattering
NLO amplitudes on µF; see (3.70)–(3.73). As a result we
observe a substantial reduction of the scale ambiguity of
the theoretical predictions in NLO in comparison with LO.

The NLO predictions are generally smaller than the
LO ones. The reason is twofold. First, according to the pa-
rameterizations we use, in this kinematic region the gluon
GPD in NLO is about a factor of two smaller than the
gluon GPD in the LO. This is another manifestation of the
large scaling violation effects at small x. Second, we find,
in accordance with the estimate (3.74), that the part of the
gluon NLO hard-scattering amplitude (3.72) ∼ α2

S leads
to a contribution which is large and has at µF � m a sign
opposite to the one of the contribution ∼ αS induced by
the Born term of (3.72). The last statement is illustrated
in Fig. 15 where the different contributions to the NLO
result for µF = µR = 4.9 GeV are shown. In the left upper
panel we present the cross section. Here the curve labeled
Born represents the results calculated using only the Born
term of (3.72), the other curve, labeled total, is the cross
section calculated with the complete result for the NLO
hard-scattering amplitudes, including the quark contribu-
tion. To avoid misunderstanding, in both calculations the
NLO GPDs were used. We see that the parts of the NLO
hard-scattering amplitudes∼ α2

S make the cross section sig-
nificantly smaller. On the bottom left and the bottom right
panels of Fig. 15 we present the decomposition into differ-
ent contributions of the imaginary and the real parts of the
NLO amplitude divided by its absolute value, ImM/|M|
and Re M/|M|. The curves labeled total represent the re-
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Fig. 14. The cross section of the Υ photoproduction; theoret-
ical predictions at NLO for the scales µF = µR = [1.3, 7] GeV
(ranging from top to bottom), and the data from ZEUS [5] and
H1 [6]

sults calculated with the complete NLO hard-scattering
amplitudes (3.72) and (3.70). In these figures the quark
contribution and the decomposition of the gluon contribu-
tion into the Born and the part induced by the term∼ α2

S
of (3.72) are shown separately. The corresponding curves
are labeled as “quark”, “Born” and “gluon”. In the right
upper panel we show Im M/|M| and Re M/|M| together.
We see that, despite the fact that the value of a strong cou-
pling constant is small at this scale, αS(µR)/(2π) ∼ 0.033
at µR = 4.9 GeV, the gluon correction constitutes ∼ 30%
of the Born contribution with the opposite sign. The quark
contribution is about ∼ 15%, with the opposite sign with
respect to the Born contribution. Note also that at high
energies the imaginary part of the amplitude is about twice
the real part.

The reduction of the ambiguity for the theoretical pre-
dictions due to a variation of µF is even more pronounced
if one chooses a fixed value of renormalization scale; see
Fig. 16. In this case the value of the cross section is pre-
dicted to be smaller than for equal scales,µR = µF; compare
Figs. 16 and 14.

To summarize our results for Υ photoproduction we
conclude that the NLO corrections stabilize the theoreti-
cal predictions with respect to variation of the factoriza-
tion scale. The NLO corrections are numerically important.
They make the NLO cross sections smaller than the LO
ones, and for the GPD model used our results seem to lie
somewhat below the data.

For the photoproduction of J/Ψ the situation is differ-
ent than for Υ production since in this case a value of the
hard scale, the quark mass, is smaller. The NLO corrections
are much larger than in the case of Υ production for the
following two reasons. First, the value of the QCD running
coupling is larger at smaller scales. Second, the value of ξ
and, consequently, the effective values of x in the factoriza-
tion formula is about two orders of magnitude smaller than
for Υ production. Therefore the effect of the enhancement
of the NLO correction at small x, see (3.74) and (3.75), is
much larger for J/Ψ . This is illustrated in Fig. 17 where
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Fig. 15. Υ photoproduction, NLO prediction for µF = µR = 4.9 GeV and its decomposition into different contributions; see text

the labeling of the curves is the same as in Fig. 15. The
data are from E401 [1] and ZEUS [7]. Note that, contrary
to Fig. 15, in the left upper panel of Fig. 17 the results for
the forward differential cross section are shown. We see
that although the predictions for the cross section are in
reasonable agreement with the data, the absolute value of
the NLO correction is very large. Note also that in this case
the quark GPD makes a significant contribution. The sum
of the gluon and the quark NLO corrections is as much as
twice the Born contribution and of opposite sign. Therefore
in NLO the total amplitude has the opposite sign as in LO.
Note also that the imaginary part of the NLO amplitude
goes through zero at W ∼ 25 GeV, which is unnatural.
Thus, we conclude that for the J/Ψ photoproduction the
higher order corrections are not under control.

5 Summary

We have shown by an explicit calculation of the partonic
one-loop amplitudes that in the heavy quark limit the
collinear factorization and the non-relativistic QCD ap-
proach applied to quarkonium photoproduction are com-
patible and lead to the unambiguous predictions (3.70)–
(3.73) for the hard-scattering amplitudes in the NLO. Pre-
sumably such a factorization scheme can be generalized to
all orders of the strong coupling expansion. The study of
this issue, although very interesting, goes beyond the scope
of the present paper.

Thenumerical analysis for theΥ photoproduction shows
that in comparison to LO the NLO corrections to the hard-
scattering amplitudes reduce significantly the ambiguity of
the predictions related to the choice of factorization scale.
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Fig. 16. The cross section for Υ photoproduction, and NLO
predictions for the scales µF = [1.3, 7] GeV, µR = 5.9 GeV

The NLO corrections are large, at HERA energies they
constitute about ∼ 40% of the Born contribution at the
amplitude level and are of the opposite sign compared to
the Born contribution.

Contrary to that, we find that for the photoproduction
of J/ψ in HERA kinematics the magnitude of the NLO
correction is about two times larger than the Born contri-
bution. Also we observe a very strong dependence of the
theoretical predictions on µF. That forces us to conclude
that at high energies for J/ψ photoproduction these cor-
rections are not under theoretical control if one works in
NLO, i.e. in the collinear factorization scheme truncated
at the second order of the strong coupling expansion.
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Fig. 17. The differential cross section for J/ψ photoproduction, NLO predictions for µF = µR = 1.52 GeV, and the data from
E401 [1] and ZEUS [7]. The labeling of the curves is the same as in Fig. 15

Note that all steps of the dispersion method developed
in this paper can be applied directly to NLO electroproduc-
tion, the process of a heavy vector meson being produced
by a virtual photon. In this case the calculations may be
much more involved due to the presence of an additional
parameter, namely m/Q. However, for electroproduction
the photon virtuality shifts the hard scale to the higher
values in comparison to photoproduction. This gives hope
that the factorization approach may be reliable for electro-
production of J/Ψ starting from some, not too high, values
of Q.

We show, see (3.74) and (3.75), that convolution of
the NLO hard-scattering amplitudes with GPDs produces
contributions which are parameterically enhanced at high
energies, ∼ α2

S ln(1/ξ). These contributions originate from
the diagrams of partonic subprocess with gluon exchange in
the t-channel and are related to the s-channel radiation of
an intermediate parton in thewide interval of rapidity, away
from the photon fragmentation region. In higher orders
such radiation generates contributions ∼ αS(αS ln(1/ξ))n.
The k⊥ factorization approach allows us to sum this class
of logarithmic corrections to all orders in αS, consistently
with the fixed-order factorization of the collinear singulari-
ties [50]. Itwould be very interesting to perform such studies
for heavy vector meson production. We believe that a re-
summation of these contributions will lead to much more
stable theoretical predictions at high energies.
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